hzCPPOJ

USACO1.4.1_Packing Rectangles 铺放矩形块

时间限制:  1 s      内存限制:   128 MB
提交:6     正确:5     分值:99

题目描述

给定4个矩形块,找出一个最小的封闭矩形将这4个矩形块放入,但不得相互重叠。所谓最小矩形指该矩形面积最小。


4个矩形块中任一个矩形的边都与封闭矩形的边相平行,图1显示出了铺放4个矩形块的6种方案。这6种方案是唯一可能的基本铺放方案。因为其它方案能由基本方案通过旋转和镜像反射得到。

可能存在满足条件且有着同样面积的各种不同的封闭矩形,你应该输出所有这些封闭矩形的边长。

输入

共有4行。每一行用两个正整数来表示一个给定的矩形块的两个边长。矩形块的每条边的边长范围最小是1,最大是50。

输出

总行数为解的总数加1。第一行是一个整数,代表封闭矩形的最小面积(子任务A)。接下来的每一行都表示一个解,由数P和数Q来表示,并且P≤Q(子任务B)。这些行必须根据P的大小按升序排列,P小的行在前,大的在后。且所有行都应是不同的。

样例

样例输入:
1 2 2 3 3 4 4 5
样例输出:
40 4 10 5 8

提交人

AmberXie

来源/分类